Montfort Laser

Spark(l)ing Applications !

Example applications of MONTFORT Laser sources

Laser applications are generally diverse and often cover completely different application fields.  In the following we provide a list of
applications for current MONTFORT Laser products:

 

 

M-NANO nanosecond

laser applications

  • Laser analytics
  • LIBS - Laser induced break-down spectroscopy
  • PA - Photo Acoustic Imaging
  • PIV - Particle Imaging Velocimetry
  • LIDAR - Light detection and ranging
  • Nonlinear optics
  • Medical
  • Optical damage testing
  • Defense
  • Laser amplification

M-FEMTO femtosecond

laser applications

  • Seeding of amplifiers
  • Pumping of femtosecond OPOs
  • Ultrafast spectroscopy
  • Nonlinear frequency conversion
  • Super-continuum generation
  • Terahertz generation

M-PICO picosecond

laser applications

  • Seeding of picosecond amplifiers
  • Pumping of short-pulse, picosecond OPOs
  • CARS / CRS microscopy
  • Nonlinear optics
  • Fundamental Research

Generate Sparks in Air in less than 5 minutes ...

... (from unpacking) with a MONTFORT M-NANO Nanosecond Laser.  See the video here how easy it is to generate such sparks in now time!

The laser beam from a standard M-NANO propagates through a normal lens and forms a spark in air.  This capability of making sparks in virtually any medium, including gases, liquids and solid materials, is used in LIBS - Laser Induced Breakdown Spectroscopy - and enables fast and precise elemental analysis used in various applications ranging from contamination analysis, industrial process analysis, debris analysis, food analysis, etc etc. 

References in Publications

MONTFORT Laser products are not only used in OEM applications, which requires confidentiality typically, but also in scientific research globally.  Here we list a number of scientific publications that have used one of our products:

 

Markus Saurer, Guenther Paltauf, Robert Nuster, Efficient testing of weld seam models with radii of curvature in the millimeter range using laser ultrasound, Ultrasonics, Volume 139, 2024, 107292, ISSN 0041-624X, https://doi.org/10.1016/j.ultras.2024.107292. https://doi.org/10.1016/j.ultras.2024.107292 2024
Wern Ng, Yongqiang Wen, Max Attwood, Daniel C Jones, Mark Oxborrow, Neil McN. Alford, Daan M. Arroo; “Maser-in-a-shoebox”: A portable plug-and-play maser device at room temperature and zero magnetic field. Appl. Phys. Lett. 22 January 2024; 124 (4): 044004. https://doi.org/10.1063/5.0181318 2024
Lobo, C.S., Mendes, M.I.P., Pereira, D.A. et al. Photodynamic therapy changes tumour immunogenicity and promotes immune-checkpoint blockade response, particularly when combined with micromechanical priming. Sci Rep 13, 11667 (2023). https://doi.org/10.1038/s41598-023-38862-8 2023
Bai Y, Li J, Zhang W, Zhang L, Hou J, Zhao Y, Chen F, Wang S, Wang G, Ma X, Liu Z, Luo X, Yin W and Jia S (2022) Accuracy Enhancement of LIBS-XRF Coal Quality Analysis Through Spectral Intensity Correction and Piecewise Modeling. Front. Phys. 9:823298. doi: 10.3389/fphy.2021.823298. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2021.823298/full 2022
D. Thompson, J.R. Nagel, D.B. Gasteau, S. Manohar, Laser-induced ultrasound transmitters for large-volume ultrasound tomography, Photoacoustics, Volume 25, 2022, 100312, ISSN 2213-5979, https://doi.org/10.1016/j.pacs.2021.100312. https://doi.org/10.1016/j.pacs.2021.100312 2022
Zhihui TIAN et al 2022 Plasma Sci. Technol. 24 084007, Elemental and proximate analysis of coal by x-ray fluorescence assisted laser-induced breakdown spectroscopy. https://iopscience.iop.org/article/10.1088/2058-6272/ac78ca/pdf 2022
Fontana, F.F.; Tassios, S.; Stromberg, J.; Tiddy, C.; van der Hoek, B.; Uvarova, Y.A. Integrated Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Wavelet Tessellation: A New, Rapid Approach for Lithogeochemical Analysis and Interpretation. Minerals 2021, 11, 312. https://doi.org/10.3390/min11030312. https://doi.org/10.3390/min11030312 2021
Kim H-S, Kim KB, Lee J-H, Jung J-J, Kim Y-J, Kim S-P, Choi M-H, Yi J-H and Chung S-C (2021) Mid-Air Tactile Sensations Evoked by Laser-Induced Plasma: A Neurophysiological Study. Front. Neurosci. 15:733423. doi: 10.3389/fnins.2021.733423. https://doi.org/10.3389/fnins.2021.733423 2021
David Thompson, Hindrik Kruit, Damien Gasteau, Srirang Manohar; Laser-induced synthetic aperture ultrasound imaging. J. Appl. Phys. 28 October 2020; 128 (16): 163105. https://doi.org/10.1063/5.0023412 2020
J. Kiefer, C. Vanselow, and A. Fischer, "Combining laser-induced breakdown spectroscopy (LIBS) and particle imaging velocimetry (PIV) for flame diagnostics," in Optical Sensors and Sensing Congress, OSA Technical Digest (Optica Publishing Group, 2020), paper LW4E.3.  https://opg.optica.org/abstract.cfm?uri=lacsea-2020-LW4E.3 2020
Kaifler, B., Rempel, D., Roßi, P., Büdenbender, C., Kaifler, N., and Baturkin, V.: A technical description of the Balloon Lidar Experiment (BOLIDE), Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, 2020. 2020
Kuniyil Ajith Singh, M.; Xia, W. Portable and Affordable Light Source-Based Photoacoustic Tomography. Sensors 2020, 20, 6173. https://doi.org/10.3390/s20216173 2020
Lintao WANG et al 2020 Plasma Sci. Technol. 22 074004, Spectral characteristics of underwater laser-induced breakdown spectroscopy under high-pressure conditions. https://iopscience.iop.org/article/10.1088/2058-6272/ab6e03 2020
Liu C, Guo J, Tian Y, Zhang C, Cheng K, Ye W, Zheng R. Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater. Sensors (Basel). 2020 Dec 21;20(24):7341. doi: 10.3390/s20247341. PMID: 33371290; PMCID: PMC7766272. https://www.mdpi.com/1424-8220/20/24/7341 2020
Srinath Rajagopal, Ben T. Cox, 100 MHz bandwidth planar laser-generated ultrasound source for hydrophone calibration, Ultrasonics, Volume 108, 2020, 106218, ISSN 0041-624X, https://doi.org/10.1016/j.ultras.2020.106218. https://doi.org/10.1016/j.ultras.2020.106218 2020
Ye W, Guo J, Li N, Qi F, Cheng K, Zheng R. Depth Profiling Investigation of Seawater Using Combined Multi-Optical Spectrometry. Appl Spectrosc. 2020 May;74(5):563-570. doi: 10.1177/0003702820906890. PMID: 32031011. https://journals.sagepub.com/doi/10.1177/0003702820906890 2020
Li N, Guo J, Zhu L, Lu Y, Tian Y, Zheng R. Effects of Ambient Temperature on Laser-Induced Plasma in Bulk Water. Appl Spectrosc. 2019 Nov;73(11):1277-1283. doi: 10.1177/0003702819856353. PMID: 31117805. https://journals.sagepub.com/doi/10.1177/0003702819856353 2020
Upputuri PK, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review. J Biomed Opt. 2019 Apr;24(4):1-20. doi: 10.1117/1.JBO.24.4.040901. PMID: 30968648; PMCID: PMC6990072. https://doi.org/10.1117/1.jbo.24.4.040901 2020
Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J. Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express. 2016 Dec 8;8(1):112-123. doi: 10.1364/BOE.8.000112. PMID: 28101405; PMCID: PMC5231285. https://doi.org/10.1364/boe.8.000112 2020